Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits: `lim_(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x^2} - \sqrt{1+x}}{\sqrt{1+x^3} - \sqrt{1+x}}, \] we will follow these steps: ### Step 1: Identify the form of the limit When we substitute \( x = 0 \) into the limit, we get: \[ \frac{\sqrt{1+0^2} - \sqrt{1+0}}{\sqrt{1+0^3} - \sqrt{1+0}} = \frac{\sqrt{1} - \sqrt{1}}{\sqrt{1} - \sqrt{1}} = \frac{0}{0}. \] This is an indeterminate form, so we need to manipulate the expression. **Hint:** Check if the limit results in an indeterminate form before proceeding. ### Step 2: Multiply by the conjugate To resolve the indeterminate form, we can multiply the numerator and denominator by the conjugate of both the numerator and the denominator. The conjugate of the numerator \( \sqrt{1+x^2} - \sqrt{1+x} \) is \( \sqrt{1+x^2} + \sqrt{1+x} \), and the conjugate of the denominator \( \sqrt{1+x^3} - \sqrt{1+x} \) is \( \sqrt{1+x^3} + \sqrt{1+x} \). Thus, we rewrite the limit as: \[ \lim_{x \to 0} \frac{(\sqrt{1+x^2} - \sqrt{1+x})(\sqrt{1+x^2} + \sqrt{1+x})}{(\sqrt{1+x^3} - \sqrt{1+x})(\sqrt{1+x^3} + \sqrt{1+x})}. \] **Hint:** Multiplying by the conjugate helps eliminate the square roots. ### Step 3: Simplify the expression Using the difference of squares, we can simplify the numerator and denominator: - Numerator: \[ (\sqrt{1+x^2})^2 - (\sqrt{1+x})^2 = (1+x^2) - (1+x) = x^2 - x. \] - Denominator: \[ (\sqrt{1+x^3})^2 - (\sqrt{1+x})^2 = (1+x^3) - (1+x) = x^3 - x. \] Now, we can rewrite the limit: \[ \lim_{x \to 0} \frac{x^2 - x}{x^3 - x} \cdot \frac{\sqrt{1+x^2} + \sqrt{1+x}}{\sqrt{1+x^3} + \sqrt{1+x}}. \] **Hint:** Use the difference of squares to simplify the expressions. ### Step 4: Factor the expressions We can factor out \( x \) from both the numerator and the denominator: \[ x(x - 1) \text{ in the numerator and } x(x^2 - 1) \text{ in the denominator}. \] Thus, we have: \[ \lim_{x \to 0} \frac{x(x - 1)}{x(x^2 - 1)} \cdot \frac{\sqrt{1+x^2} + \sqrt{1+x}}{\sqrt{1+x^3} + \sqrt{1+x}}. \] Cancelling \( x \) (since \( x \neq 0 \) in the limit), \[ \lim_{x \to 0} \frac{x - 1}{x^2 - 1} \cdot \frac{\sqrt{1+x^2} + \sqrt{1+x}}{\sqrt{1+x^3} + \sqrt{1+x}}. \] **Hint:** Factor out common terms to simplify further. ### Step 5: Evaluate the limit Now we can substitute \( x = 0 \): - The first part becomes: \[ \frac{0 - 1}{0^2 - 1} = \frac{-1}{-1} = 1. \] - The second part becomes: \[ \frac{\sqrt{1+0^2} + \sqrt{1+0}}{\sqrt{1+0^3} + \sqrt{1+0}} = \frac{\sqrt{1} + \sqrt{1}}{\sqrt{1} + \sqrt{1}} = \frac{1 + 1}{1 + 1} = \frac{2}{2} = 1. \] Thus, the limit evaluates to: \[ 1 \cdot 1 = 1. \] ### Final Answer The limit is \[ \boxed{1}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x^2} - \sqrt{1+x}}{\sqrt{1+x^3} - \sqrt{1+x}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise SOLVED EXAMPLES|49 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x))

Evaluate the following limits: lim_(xrarr0)((sqrt(1+2x)-sqrt(1-2x)))/(sinx)

Evaluate the following limits: lim_(xrarr0)((sqrt(1+x+x^(2))-1)/(x))

Evaluate the following limits: lim_(xrarr0)((2x)/(sqrt(x+2)-sqrt(2-x)))

Evaluate the following limit: (lim)_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(x)

Evaluate the following limits: lim_(xrarr0)((sqrt(x+h)-sqrtx)/(x))

Evaluate the following limits: lim_(xrarr0)(sqrt(1+sinx)-1sqrt(1-sinx))/(x)

Evaluate the following limits: lim_(xrarr4)((3-sqrt(5+x))/(1-sqrt(5-x)))

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x)

RS AGGARWAL-LIMIT-EXERCISE 27A
  1. Evaluate the following limits: lim(xrarr0)((sqrt(1+x+x^(2))-1)/(x))

    Text Solution

    |

  2. Evaluate the following limits: lim (x->1)((sqrt(2-x)-1)/(1-x))

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)((2x)/(sqrt(x+2)-sqrt(2-x))...

    Text Solution

    |

  4. Evaluate the following limit: (lim)(x->1)(sqrt(3+x)-sqrt(5-x))/(x^2-1)

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr2)((x^(2)-4)/(sqrt(x+2)-sqrt...

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr4)((3-sqrt(5+x))/(1-sqrt(5-x)...

    Text Solution

    |

  7. Evaluate the following limits: lim(xrarr1)((sqrt(a+x)-sqrta)/(xsqrt(...

    Text Solution

    |

  8. Evaluate the following limits: lim(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))...

    Text Solution

    |

  9. lim(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

    Text Solution

    |

  10. Evaluate the following limits: lim(xrarr2)((3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  11. Evaluate the following limits: lim(xrarr0)((e^(4x)-1)/(x))

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)((e^(2+x)-e^(2))/(x))

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr4)((e^(x)-e^(4))/(x-4))

    Text Solution

    |

  14. Evaluate the following limits: lim(xrarr0)((e^(2+x)-e^(2))/(x))

    Text Solution

    |

  15. Evaluate the following limits: lim(xrarr0)((e^(x)-x-1)/(x))

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr0)((e^(bx)-e^(ax))/(x)),0lt...

    Text Solution

    |

  17. Evaluate the following limits: lim(xrarr0)((a^(x)-b^(x))/(x))

    Text Solution

    |

  18. Evaluate the following limits: lim(xrarr0)((a^(x)-a^(-x))/(x))

    Text Solution

    |

  19. Evaluate the following limits: lim(xrarr0)((2^(x)-1)/(x))

    Text Solution

    |

  20. Evaluate the following limits: lim(xrarr0)((3^(2+x)-9)/(x))

    Text Solution

    |