Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr2)((3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{3-x} - 3^{x/2}}, \] we will follow these steps: ### Step 1: Substitute \( x = 2 \) First, we substitute \( x = 2 \) into the expression to check if we get a determinate form. \[ 3^2 + 3^{3-2} - 12 = 9 + 3 - 12 = 0, \] \[ 3^{3-2} - 3^{2/2} = 3 - 3 = 0. \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule or simplify further. ### Step 2: Rewrite the expression We can rewrite the limit as: \[ \lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{3-x} - 3^{x/2}}. \] ### Step 3: Change of variable Let us set \( t = 3^{x/2} \). Then, as \( x \to 2 \), \( t \to 3 \). We can express \( 3^x \) and \( 3^{3-x} \) in terms of \( t \): \[ 3^x = t^2, \quad 3^{3-x} = \frac{27}{t^2}. \] Substituting these into the limit gives: \[ \lim_{t \to 3} \frac{t^2 + \frac{27}{t^2} - 12}{\frac{27}{t^2} - t}. \] ### Step 4: Simplify the expression Now we simplify the numerator and denominator: **Numerator:** \[ t^2 + \frac{27}{t^2} - 12 = \frac{t^4 - 12t^2 + 27}{t^2}. \] **Denominator:** \[ \frac{27}{t^2} - t = \frac{27 - t^3}{t^2}. \] Thus, the limit becomes: \[ \lim_{t \to 3} \frac{t^4 - 12t^2 + 27}{27 - t^3}. \] ### Step 5: Substitute \( t = 3 \) Now substituting \( t = 3 \): **Numerator:** \[ 3^4 - 12 \cdot 3^2 + 27 = 81 - 108 + 27 = 0. \] **Denominator:** \[ 27 - 3^3 = 27 - 27 = 0. \] Again, we have an indeterminate form \( \frac{0}{0} \). ### Step 6: Apply L'Hôpital's Rule We apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and denominator: **Numerator's derivative:** \[ \frac{d}{dt}(t^4 - 12t^2 + 27) = 4t^3 - 24t. \] **Denominator's derivative:** \[ \frac{d}{dt}(27 - t^3) = -3t^2. \] Now we have: \[ \lim_{t \to 3} \frac{4t^3 - 24t}{-3t^2}. \] ### Step 7: Substitute \( t = 3 \) again Substituting \( t = 3 \): **Numerator:** \[ 4(3^3) - 24(3) = 4(27) - 72 = 108 - 72 = 36. \] **Denominator:** \[ -3(3^2) = -3(9) = -27. \] Thus, the limit becomes: \[ \frac{36}{-27} = -\frac{4}{3}. \] ### Final Answer The limit evaluates to: \[ \lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{3-x} - 3^{x/2}} = -\frac{4}{3}. \]

To evaluate the limit \[ \lim_{x \to 2} \frac{3^x + 3^{3-x} - 12}{3^{3-x} - 3^{x/2}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise SOLVED EXAMPLES|49 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr2)(5-x)

Evaluate the following limits : lim_(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)) .

Evaluate the following limit: (lim)_(x rarr2)(3-x)

Evaluate the following limits: lim_(xrarr0)((3^(2+x)-9)/(x))

Evaluate the following limits: lim_(xrarr2)((x^(5)-32)/(x^(3)-8))

Evaluate the following limits: lim_(xrarr1)((x^(3)-x)/(x-1))

Evaluate the following limits: lim_(xrarr3)((x^(3)-27)/(x-3))

Evaluate the following limits: lim_(xrarr3)((x^(2)-4x)/(x-2))

Evaluate the following limits: lim_(xrarr-2)((x^(3)+8)/(x+2))

Evaluate the following limits: lim_(xrarr1)(6x^(2)-4x+3)

RS AGGARWAL-LIMIT-EXERCISE 27A
  1. Evaluate the following limits: lim(xrarr0)((sqrt(1+x+x^(2))-1)/(x))

    Text Solution

    |

  2. Evaluate the following limits: lim (x->1)((sqrt(2-x)-1)/(1-x))

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)((2x)/(sqrt(x+2)-sqrt(2-x))...

    Text Solution

    |

  4. Evaluate the following limit: (lim)(x->1)(sqrt(3+x)-sqrt(5-x))/(x^2-1)

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr2)((x^(2)-4)/(sqrt(x+2)-sqrt...

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr4)((3-sqrt(5+x))/(1-sqrt(5-x)...

    Text Solution

    |

  7. Evaluate the following limits: lim(xrarr1)((sqrt(a+x)-sqrta)/(xsqrt(...

    Text Solution

    |

  8. Evaluate the following limits: lim(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))...

    Text Solution

    |

  9. lim(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

    Text Solution

    |

  10. Evaluate the following limits: lim(xrarr2)((3^(x)+3^(3-x)-12)/(3^(3-...

    Text Solution

    |

  11. Evaluate the following limits: lim(xrarr0)((e^(4x)-1)/(x))

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)((e^(2+x)-e^(2))/(x))

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr4)((e^(x)-e^(4))/(x-4))

    Text Solution

    |

  14. Evaluate the following limits: lim(xrarr0)((e^(2+x)-e^(2))/(x))

    Text Solution

    |

  15. Evaluate the following limits: lim(xrarr0)((e^(x)-x-1)/(x))

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr0)((e^(bx)-e^(ax))/(x)),0lt...

    Text Solution

    |

  17. Evaluate the following limits: lim(xrarr0)((a^(x)-b^(x))/(x))

    Text Solution

    |

  18. Evaluate the following limits: lim(xrarr0)((a^(x)-a^(-x))/(x))

    Text Solution

    |

  19. Evaluate the following limits: lim(xrarr0)((2^(x)-1)/(x))

    Text Solution

    |

  20. Evaluate the following limits: lim(xrarr0)((3^(2+x)-9)/(x))

    Text Solution

    |