Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr pi//6)((2sin^(2)x+sinx-1))/((2sin^(2)x-3sinx+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}, \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{6} \) First, we substitute \( x = \frac{\pi}{6} \) into the expression to check if it results in an indeterminate form. Calculating \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \): - Numerator: \[ 2\sin^2\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) - 1 = 2\left(\frac{1}{2}\right)^2 + \frac{1}{2} - 1 = 2 \cdot \frac{1}{4} + \frac{1}{2} - 1 = \frac{1}{2} + \frac{1}{2} - 1 = 0. \] - Denominator: \[ 2\sin^2\left(\frac{\pi}{6}\right) - 3\sin\left(\frac{\pi}{6}\right) + 1 = 2\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 1 = 2 \cdot \frac{1}{4} - \frac{3}{2} + 1 = \frac{1}{2} - \frac{3}{2} + 1 = 0. \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the numerator and denominator Next, we need to factor both the numerator and the denominator. **Numerator:** \[ 2\sin^2 x + \sin x - 1 = (2\sin x - 1)(\sin x + 1). \] **Denominator:** \[ 2\sin^2 x - 3\sin x + 1 = (2\sin x - 1)(\sin x - 1). \] ### Step 3: Simplify the limit Now we can rewrite the limit using the factored forms: \[ \lim_{x \to \frac{\pi}{6}} \frac{(2\sin x - 1)(\sin x + 1)}{(2\sin x - 1)(\sin x - 1)}. \] We can cancel out the common factor \( (2\sin x - 1) \) (as long as \( \sin x \neq \frac{1}{2} \), which is valid in the limit): \[ \lim_{x \to \frac{\pi}{6}} \frac{\sin x + 1}{\sin x - 1}. \] ### Step 4: Substitute \( x = \frac{\pi}{6} \) again Now we substitute \( x = \frac{\pi}{6} \) again: \[ \frac{\sin\left(\frac{\pi}{6}\right) + 1}{\sin\left(\frac{\pi}{6}\right) - 1} = \frac{\frac{1}{2} + 1}{\frac{1}{2} - 1} = \frac{\frac{3}{2}}{-\frac{1}{2}} = -3. \] ### Final Answer Thus, the limit is \[ \boxed{-3}. \]

To evaluate the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(x to(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)

Evaluate the following limits: lim_(xrarr0)(sin2x+sin3x)/(2x+sin3x)

Evaluate the following limits: lim_(xrarr0)((1-cosx))/(sin^(2)x)

Evaluate the following limits: lim_(xrarr0)((2^(x)-1)/(x))

Evaluate the following limits: lim_(xrarr0)(sin(x//4))/(x)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

Evaluate the following limits: lim_(xrarr1)(6x^(2)-4x+3)

Evaluate the following limits: lim_(xrarr0)((sin2x+3x))/((2x+sin3x))

Evaluate the following limits: lim_(xrarr0)((sinx-2sin3x+sin5x))/(x)

Evaluate the following limits: lim_(xrarr0)((sin5x-sin3x))/(sinx)

RS AGGARWAL-LIMIT-EXERCISE 27B
  1. Evaluate the following limits: lim(xrarr0)(sinmx)/(tannx)

    Text Solution

    |

  2. Evaluate the following limits: lim(xrarr0)((sinx-2sin3x+sin5x))/(x)

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr pi//6)((2sin^(2)x+sinx-1))/...

    Text Solution

    |

  4. Evaluate the following limits: lim(xrarr0)((sin2x+3x))/((2x+sin3x))

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr0)((tan2x-x))/((3x-tanx))

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr0)((x^(2)-tan2x))/(tanx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xrarr0)((xcosx+sinx))/((x^(2)+tanx...

    Text Solution

    |

  8. Evaluate the following limits: lim(xrarr0)((tanx-sinx))/(sin^(3)x)

    Text Solution

    |

  9. Evaluate the following limits: lim(xrarr0)(xcosecx)

    Text Solution

    |

  10. Evaluate the following limits: lim(xrarr0)(x cot2x)

    Text Solution

    |

  11. Evaluate the following limits: lim(xrarr0)(sinxcosx0)/(3x)

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)(sin(x//4))/(x)

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr0)(tan(x//2))/(3x)

    Text Solution

    |

  14. Evaluate the following limits: lim(xrarr0)((1-cosx))/(sin^(2)x)

    Text Solution

    |

  15. Evaluate the following limits: lim(xrarr0)((1-cos3x))/(x^(2))

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr0)((1-cos2x))/(sin^(2)2x)

    Text Solution

    |

  17. Evaluate the following limits: lim((1-cos2x))/(3tan^(2)x)

    Text Solution

    |

  18. Evaluate the following limits: lim(xrarr0)((1-cos2x))/((1-cos6x))

    Text Solution

    |

  19. Evaluate, underset(xrarr0)"lim"(1-cosmx)/(1-cosnx)

    Text Solution

    |

  20. Evaluate underset(xrarr0)"lim"(2sinx-sin2x)/(x^(3))

    Text Solution

    |