Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr0)(sin(x//4))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{x} \] To simplify this expression, we can multiply and divide by \( \frac{1}{4} \): \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{\frac{x}{4}} \cdot \frac{1}{4} \] ### Step 2: Apply the standard limit We know from the standard limit that: \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \] In our case, let \( u = \frac{x}{4} \). As \( x \to 0 \), \( u \to 0 \) as well. Thus, we can rewrite our limit: \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{\frac{x}{4}} = 1 \] ### Step 3: Combine the results Now substituting back into our limit, we have: \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{x} = 1 \cdot \frac{1}{4} = \frac{1}{4} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{4}\right)}{x} = \frac{1}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)(tan(x//2))/(3x)

Evaluate the following limits: lim_(xrarr0)(sin4x)/(6x)

Evaluate the following limits: lim_(xrarr0)(sin5x)/(sin8x)

Evaluate the following limits: lim_(xrarr0)(sinxcosx0)/(3x)

Evaluate the following limits: lim_(xrarr0)(xcosecx)

Evaluate the following limits: lim_(xrarr0)(sinmx)/(tannx)

Evaluate the following limits: lim_(xrarr0)((sin2x+3x))/((2x+sin3x))

Evaluate the following limits: lim_(xrarr0)((tan2x-sin2x))/(x^(3))

Evaluate the following limits: lim_(xrarr0)(x cot2x)

Evaluate the following limits: lim_(xrarr0)((e^(x)-x-1)/(x))

RS AGGARWAL-LIMIT-EXERCISE 27B
  1. Evaluate the following limits: lim(xrarr0)(x cot2x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xrarr0)(sinxcosx0)/(3x)

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)(sin(x//4))/(x)

    Text Solution

    |

  4. Evaluate the following limits: lim(xrarr0)(tan(x//2))/(3x)

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr0)((1-cosx))/(sin^(2)x)

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr0)((1-cos3x))/(x^(2))

    Text Solution

    |

  7. Evaluate the following limits: lim(xrarr0)((1-cos2x))/(sin^(2)2x)

    Text Solution

    |

  8. Evaluate the following limits: lim((1-cos2x))/(3tan^(2)x)

    Text Solution

    |

  9. Evaluate the following limits: lim(xrarr0)((1-cos2x))/((1-cos6x))

    Text Solution

    |

  10. Evaluate, underset(xrarr0)"lim"(1-cosmx)/(1-cosnx)

    Text Solution

    |

  11. Evaluate underset(xrarr0)"lim"(2sinx-sin2x)/(x^(3))

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)((tanx-sinx))/(sin^(3)x)

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr0)((tan2x-sin2x))/(x^(3))

    Text Solution

    |

  14. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  15. Evaluate the following limits: lim(xrarr0)((cot2x-cosecex))/(x)

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr0)((cosecx-cotx))/(x^(3))

    Text Solution

    |

  17. lim(xrarr(pi//4))(sec^(x)-2)/(tanx-1) is

    Text Solution

    |

  18. Evaluate the following limits: lim(xrarr(pi)/(4))((cosec^(2)x-2))/((...

    Text Solution

    |

  19. Evaluate the following limits: lim(xrarr (pi)/(4))(tanx-1)/((x-(pi)/(...

    Text Solution

    |

  20. lim(x->pi)((sin3x-3sinx)/((pi-x)^3))

    Text Solution

    |