Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr0)(tan(x//2))/(3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\tan\left(\frac{x}{2}\right)}{3x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\tan\left(\frac{x}{2}\right)}{3x} \] ### Step 2: Use the limit property of \(\tan\) As \( x \to 0 \), we can use the property that \( \tan(kx) \approx kx \) for small values of \( x \). Specifically, we have: \[ \tan\left(\frac{x}{2}\right) \approx \frac{x}{2} \quad \text{as } x \to 0 \] ### Step 3: Substitute the approximation into the limit Substituting this approximation into our limit gives: \[ \lim_{x \to 0} \frac{\frac{x}{2}}{3x} \] ### Step 4: Simplify the expression Now we simplify the expression: \[ \frac{\frac{x}{2}}{3x} = \frac{x}{2} \cdot \frac{1}{3x} = \frac{1}{6} \] ### Step 5: Evaluate the limit Since there are no \( x \) terms left in the expression, we can directly evaluate the limit: \[ \lim_{x \to 0} \frac{1}{6} = \frac{1}{6} \] ### Final Answer Thus, the limit is: \[ \frac{1}{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)(sin(x//4))/(x)

Evaluate the following limits: lim_(xrarr2)(5-x)

Evaluate the following limits: lim_(xrarr0)((e^(tanx)-1))/(x)

Evaluate the following limits: lim_(xrarr0)(tan3x)/(tan5x)

Evaluate the following limits: lim_(xrarr0)(tan3x)/(sin4x)

Evaluate the following limits: lim_(xrarr0)(x cot2x)

Evaluate the following limits: lim_(xrarr0)((tan2x-x))/((3x-tanx))

Evaluate the following limits: lim_(xrarr0)((tan2x-sin2x))/(x^(3))

Evaluate the following limits: lim_(xrarr0)(sin4x)/(6x)

Evaluate the following limits: lim_(xrarr0)(xcosecx)

RS AGGARWAL-LIMIT-EXERCISE 27B
  1. Evaluate the following limits: lim(xrarr0)(sinxcosx0)/(3x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xrarr0)(sin(x//4))/(x)

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)(tan(x//2))/(3x)

    Text Solution

    |

  4. Evaluate the following limits: lim(xrarr0)((1-cosx))/(sin^(2)x)

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr0)((1-cos3x))/(x^(2))

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr0)((1-cos2x))/(sin^(2)2x)

    Text Solution

    |

  7. Evaluate the following limits: lim((1-cos2x))/(3tan^(2)x)

    Text Solution

    |

  8. Evaluate the following limits: lim(xrarr0)((1-cos2x))/((1-cos6x))

    Text Solution

    |

  9. Evaluate, underset(xrarr0)"lim"(1-cosmx)/(1-cosnx)

    Text Solution

    |

  10. Evaluate underset(xrarr0)"lim"(2sinx-sin2x)/(x^(3))

    Text Solution

    |

  11. Evaluate the following limits: lim(xrarr0)((tanx-sinx))/(sin^(3)x)

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)((tan2x-sin2x))/(x^(3))

    Text Solution

    |

  13. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  14. Evaluate the following limits: lim(xrarr0)((cot2x-cosecex))/(x)

    Text Solution

    |

  15. Evaluate the following limits: lim(xrarr0)((cosecx-cotx))/(x^(3))

    Text Solution

    |

  16. lim(xrarr(pi//4))(sec^(x)-2)/(tanx-1) is

    Text Solution

    |

  17. Evaluate the following limits: lim(xrarr(pi)/(4))((cosec^(2)x-2))/((...

    Text Solution

    |

  18. Evaluate the following limits: lim(xrarr (pi)/(4))(tanx-1)/((x-(pi)/(...

    Text Solution

    |

  19. lim(x->pi)((sin3x-3sinx)/((pi-x)^3))

    Text Solution

    |

  20. Evaluate: ("lim")(xvecpi/2)(1+cos2x)/((pi-2x)^2)

    Text Solution

    |