Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr0)((1-cos3x))/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{1 - \cos(3x)}{x^2} \), we can use the trigonometric identity and properties of limits. Here’s a step-by-step solution: ### Step 1: Use the identity for \( 1 - \cos(θ) \) We know from trigonometric identities that: \[ 1 - \cos(θ) = 2 \sin^2\left(\frac{θ}{2}\right) \] Applying this identity with \( θ = 3x \): \[ 1 - \cos(3x) = 2 \sin^2\left(\frac{3x}{2}\right) \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{1 - \cos(3x)}{x^2} = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{3x}{2}\right)}{x^2} \] ### Step 2: Rewrite the limit Now, we can factor out the constant: \[ = 2 \lim_{x \to 0} \frac{\sin^2\left(\frac{3x}{2}\right)}{x^2} \] ### Step 3: Change the variable To simplify further, we can change the variable. Let \( u = \frac{3x}{2} \). Then, as \( x \to 0 \), \( u \to 0 \) as well. Notice that \( x = \frac{2u}{3} \), so \( x^2 = \left(\frac{2u}{3}\right)^2 = \frac{4u^2}{9} \). Substituting this into the limit gives: \[ = 2 \lim_{u \to 0} \frac{\sin^2(u)}{\left(\frac{4u^2}{9}\right)} = 2 \lim_{u \to 0} \frac{9 \sin^2(u)}{4u^2} \] ### Step 4: Apply the limit property We know that: \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \] Thus: \[ \lim_{u \to 0} \frac{\sin^2(u)}{u^2} = \left(\lim_{u \to 0} \frac{\sin(u)}{u}\right)^2 = 1^2 = 1 \] So we can simplify our limit: \[ = 2 \cdot \frac{9}{4} \cdot 1 = \frac{18}{4} = \frac{9}{2} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{1 - \cos(3x)}{x^2} = \frac{9}{2} \]

To evaluate the limit \( \lim_{x \to 0} \frac{1 - \cos(3x)}{x^2} \), we can use the trigonometric identity and properties of limits. Here’s a step-by-step solution: ### Step 1: Use the identity for \( 1 - \cos(θ) \) We know from trigonometric identities that: \[ 1 - \cos(θ) = 2 \sin^2\left(\frac{θ}{2}\right) \] Applying this identity with \( θ = 3x \): ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)((1-cosx))/(sin^(2)x)

Evaluate the following limits: lim_(xrarr0)((cos3x-cos5x))/(x^(2))

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

Evaluate the following limits: lim_(xrarr0)(xcosecx)

Evaluate the following limits: lim_(xrarr0)((xcosx+sinx))/((x^(2)+tanx))

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((cos2x-cos8x))

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((1-cos6x))

Evaluate the following limits: lim_(xrarr0)(x cot2x)

Evaluate the following limits: lim_(xrarr0)(sinxcosx0)/(3x)

Evaluate the following limits: lim_(xrarr0)((cosecx-cotx))/(x^(3))

RS AGGARWAL-LIMIT-EXERCISE 27B
  1. Evaluate the following limits: lim(xrarr0)(tan(x//2))/(3x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xrarr0)((1-cosx))/(sin^(2)x)

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)((1-cos3x))/(x^(2))

    Text Solution

    |

  4. Evaluate the following limits: lim(xrarr0)((1-cos2x))/(sin^(2)2x)

    Text Solution

    |

  5. Evaluate the following limits: lim((1-cos2x))/(3tan^(2)x)

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr0)((1-cos2x))/((1-cos6x))

    Text Solution

    |

  7. Evaluate, underset(xrarr0)"lim"(1-cosmx)/(1-cosnx)

    Text Solution

    |

  8. Evaluate underset(xrarr0)"lim"(2sinx-sin2x)/(x^(3))

    Text Solution

    |

  9. Evaluate the following limits: lim(xrarr0)((tanx-sinx))/(sin^(3)x)

    Text Solution

    |

  10. Evaluate the following limits: lim(xrarr0)((tan2x-sin2x))/(x^(3))

    Text Solution

    |

  11. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)((cot2x-cosecex))/(x)

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr0)((cosecx-cotx))/(x^(3))

    Text Solution

    |

  14. lim(xrarr(pi//4))(sec^(x)-2)/(tanx-1) is

    Text Solution

    |

  15. Evaluate the following limits: lim(xrarr(pi)/(4))((cosec^(2)x-2))/((...

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr (pi)/(4))(tanx-1)/((x-(pi)/(...

    Text Solution

    |

  17. lim(x->pi)((sin3x-3sinx)/((pi-x)^3))

    Text Solution

    |

  18. Evaluate: ("lim")(xvecpi/2)(1+cos2x)/((pi-2x)^2)

    Text Solution

    |

  19. Evaluate the following limits: lim(xrarra)((sinx-sina))/((x-a))

    Text Solution

    |

  20. Evaluate the following limits: lim(xrarra)((sinx-sina))/((x-a))

    Text Solution

    |