Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr0)((sqrt(1+2x)-sqrt(1-2x)))/(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{\sin x}, \] we can follow these steps: ### Step 1: Multiply by the Conjugate To simplify the expression, we will multiply the numerator and the denominator by the conjugate of the numerator: \[ \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{\sin x} \cdot \frac{\sqrt{1 + 2x} + \sqrt{1 - 2x}}{\sqrt{1 + 2x} + \sqrt{1 - 2x}}. \] This gives us: \[ \frac{(\sqrt{1 + 2x})^2 - (\sqrt{1 - 2x})^2}{\sin x \cdot (\sqrt{1 + 2x} + \sqrt{1 - 2x})}. \] ### Step 2: Simplify the Numerator Using the difference of squares, we can simplify the numerator: \[ (1 + 2x) - (1 - 2x) = 2x + 2x = 4x. \] So, we have: \[ \frac{4x}{\sin x \cdot (\sqrt{1 + 2x} + \sqrt{1 - 2x})}. \] ### Step 3: Rewrite the Limit Now we can rewrite the limit as: \[ \lim_{x \to 0} \frac{4x}{\sin x \cdot (\sqrt{1 + 2x} + \sqrt{1 - 2x})}. \] ### Step 4: Use the Limit Property We know that \[ \lim_{x \to 0} \frac{\sin x}{x} = 1, \] which implies \[ \lim_{x \to 0} \frac{x}{\sin x} = 1. \] Thus, we can express our limit as: \[ 4 \cdot \lim_{x \to 0} \frac{x}{\sin x} \cdot \frac{1}{\sqrt{1 + 2x} + \sqrt{1 - 2x}}. \] ### Step 5: Evaluate the Limit Now we evaluate the limit of the remaining expression as \(x\) approaches 0: \[ \sqrt{1 + 2(0)} + \sqrt{1 - 2(0)} = \sqrt{1} + \sqrt{1} = 1 + 1 = 2. \] So we have: \[ \lim_{x \to 0} \frac{4x}{\sin x \cdot (\sqrt{1 + 2x} + \sqrt{1 - 2x})} = 4 \cdot 1 \cdot \frac{1}{2} = 2. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{2}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1 + 2x} - \sqrt{1 - 2x}}{\sin x}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)((sqrt(2-x)-sqrt(2+x))/(x))

Evaluate the following limits: lim_(xrarr0)((2x)/(sqrt(x+2)-sqrt(2-x)))

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x)

Evaluate the following limits: lim_(xrarr0)((sqrt(x+h)-sqrtx)/(x))

Evaluate the following limits: lim_(xrarr0)(sqrt(1+sinx)-1sqrt(1-sinx))/(x)

Evaluate the following limits: lim_(xrarr0)(x cot2x)

Evaluate the following limits: lim_(xrarr4)((3-sqrt(5+x))/(1-sqrt(5-x)))

Evaluate the following limits: lim_(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x)))

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-sqrt(1-x))/x

Evaluate the following limits : lim_(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(x)

RS AGGARWAL-LIMIT-EXERCISE 27B
  1. Evaluate the following limits: lim(xrarr0)((1-cos2x))/((cos2x-cos8x)...

    Text Solution

    |

  2. Evaluate the following limits: lim(xrarr(pi)/(2))((pi)/(2)-x)tanx

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)((sqrt(1+2x)-sqrt(1-2x)))/...

    Text Solution

    |

  4. Evaluate the following limits: lim(xrarr0)((e^(tan-x)-1))/(tanx)

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr0)((e^(3+x)-sinx-e^(3)))/(x)

    Text Solution

    |

  6. Evaluate the following limits: lim(xrarr0)((e^(tanx)-1))/(tanx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xrarr0)((e^(tanx)-1))/(x)

    Text Solution

    |

  8. Evaluate the following limits: lim(xrarr0)(ax+x cosx)/(b sinx)

    Text Solution

    |

  9. Evaluate the following limits: lim(xrarr0)(sinax+bx)/(ax+sinbx),wher...

    Text Solution

    |

  10. lim(x->pi)(sin(pi-x)/(pi(pi-x)))

    Text Solution

    |

  11. lim(x->pi/2) (tan 2x)/(x-pi/2)

    Text Solution

    |

  12. Evaluate the following limits: lim(xrarr0)(cos2x-1)/(cosx-1)

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr0)(cosec x-cotx)

    Text Solution

    |

  14. Evaluate the following limits: lim(xrarr0)(1-cos2mx)/(1-cos2nx)

    Text Solution

    |

  15. Evaluate, underset(xrarr0)"lim"(1-cosmx)/(1-cosnx)

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr0)(sin^(2)mx)/(sin^(2)nx)

    Text Solution

    |

  17. Evaluate the following limits: lim(xrarr0)(sin2x+sin3x)/(2x+sin3x)

    Text Solution

    |

  18. The value of lim(x->0)(sec4x-sec2x)/(sec3x-secx) is

    Text Solution

    |

  19. Evaluate the following limits: lim(x to0)(sqrt2-sqrt(1+cosx))/(2x+si...

    Text Solution

    |

  20. Evaluate the following limits: lim(xrarr0)(sqrt(1+sinx)-1sqrt(1-sinx...

    Text Solution

    |