Home
Class 11
MATHS
Evaluate the following limits: lim(xra...

Evaluate the following limits:
`lim_(xrarr0)(1-cos2mx)/(1-cos2nx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(2mx)}{1 - \cos(2nx)}, \] we will follow these steps: ### Step 1: Identify the form of the limit When we substitute \(x = 0\) into the expression, we get: \[ 1 - \cos(2m \cdot 0) = 1 - \cos(0) = 1 - 1 = 0, \] and \[ 1 - \cos(2n \cdot 0) = 1 - \cos(0) = 1 - 1 = 0. \] Thus, we have a \( \frac{0}{0} \) indeterminate form, which allows us to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \(1 - \cos(2mx)\) is \(2m \sin(2mx)\). - The derivative of the denominator \(1 - \cos(2nx)\) is \(2n \sin(2nx)\). So we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2m \sin(2mx)}{2n \sin(2nx)} = \lim_{x \to 0} \frac{m \sin(2mx)}{n \sin(2nx)}. \] ### Step 3: Substitute \(x = 0\) again Substituting \(x = 0\) again gives us: \[ \sin(2m \cdot 0) = \sin(0) = 0, \] and \[ \sin(2n \cdot 0) = \sin(0) = 0. \] This again results in a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule a second time. ### Step 4: Differentiate again Differentiating again: - The derivative of the numerator \(m \sin(2mx)\) is \(2m^2 \cos(2mx)\). - The derivative of the denominator \(n \sin(2nx)\) is \(2n^2 \cos(2nx)\). Thus, we have: \[ \lim_{x \to 0} \frac{2m^2 \cos(2mx)}{2n^2 \cos(2nx)} = \lim_{x \to 0} \frac{m^2 \cos(2mx)}{n^2 \cos(2nx)}. \] ### Step 5: Substitute \(x = 0\) one last time Now substituting \(x = 0\): \[ \cos(2m \cdot 0) = \cos(0) = 1, \] and \[ \cos(2n \cdot 0) = \cos(0) = 1. \] Thus, we get: \[ \frac{m^2 \cdot 1}{n^2 \cdot 1} = \frac{m^2}{n^2}. \] ### Final Answer Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{1 - \cos(2mx)}{1 - \cos(2nx)} = \frac{m^2}{n^2}. \] ---

To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(2mx)}{1 - \cos(2nx)}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27C|15 Videos
  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27A|40 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((1-cos6x))

Evaluate the following limits: lim_(xrarr0)(x cot2x)

Evaluate the following limits: lim_(xrarr0)(xcosecx)

Evaluate the following limits: lim_(xrarr0)(cos2x-1)/(cosx-1)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((cos2x-cos8x))

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

Evaluate the following limit: (lim)_(x rarr0)(1-cos2x)/(cos2x-cos8x)

Evaluate the following limit: (lim)_(x rarr0)(1-cos mx)/(x^(2))

Evaluate the following limits: lim_(xrarr0)((1-cosx))/(sin^(2)x)

Evaluate the following limits: lim_(xrarr0)(sinxcosx0)/(3x)

RS AGGARWAL-LIMIT-EXERCISE 27B
  1. lim(x->pi)(sin(pi-x)/(pi(pi-x)))

    Text Solution

    |

  2. lim(x->pi/2) (tan 2x)/(x-pi/2)

    Text Solution

    |

  3. Evaluate the following limits: lim(xrarr0)(cos2x-1)/(cosx-1)

    Text Solution

    |

  4. Evaluate the following limits: lim(xrarr0)(cosec x-cotx)

    Text Solution

    |

  5. Evaluate the following limits: lim(xrarr0)(1-cos2mx)/(1-cos2nx)

    Text Solution

    |

  6. Evaluate, underset(xrarr0)"lim"(1-cosmx)/(1-cosnx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xrarr0)(sin^(2)mx)/(sin^(2)nx)

    Text Solution

    |

  8. Evaluate the following limits: lim(xrarr0)(sin2x+sin3x)/(2x+sin3x)

    Text Solution

    |

  9. The value of lim(x->0)(sec4x-sec2x)/(sec3x-secx) is

    Text Solution

    |

  10. Evaluate the following limits: lim(x to0)(sqrt2-sqrt(1+cosx))/(2x+si...

    Text Solution

    |

  11. Evaluate the following limits: lim(xrarr0)(sqrt(1+sinx)-1sqrt(1-sinx...

    Text Solution

    |

  12. lim(x->pi/6)(2-sqrt(3)cosx-sinx)/((6x-pi)^2)

    Text Solution

    |

  13. Evaluate the following limits: lim(xrarr0)(cos ax-cos bx)/(cos cx-1)

    Text Solution

    |

  14. Evaluate the following limits: lim(xrarra)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  15. lim(x rarr pi/4)(tan^3x-tanx)/(cos(x+pi/4)

    Text Solution

    |

  16. Evaluate the following limits: lim(xrarr(pi)/(2))(sqrt2-sqrt(1+sinx)...

    Text Solution

    |

  17. Evaluate the following limit: (lim)(x->pi/6)(cot^2x-3)/(cos e c x-2)

    Text Solution

    |

  18. Evaluate the following limits: lim(xrarr pi)(sqrt(2+cosx)-1)/((pi-x)...

    Text Solution

    |

  19. Evaluate the following limits: lim(xrarr(pi)/(4))(1-tanx)/(1-sqrt2si...

    Text Solution

    |

  20. Evaluate the following limits: lim(x to(pi)/(6))(2sin^(2)x+sinx-1)/(2...

    Text Solution

    |