Home
Class 11
MATHS
Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x...

Let `f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):}`
Find `lim_(xrarr1)f(x).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 1, we need to evaluate the left-hand limit and the right-hand limit separately. ### Step 1: Identify the function definitions The function \( f(x) \) is defined as: - \( f(x) = 5x - 4 \) for \( 0 < x \leq 1 \) - \( f(x) = 4x^3 - 3x \) for \( 1 < x < 2 \) ### Step 2: Calculate the right-hand limit as \( x \) approaches 1 To find the right-hand limit \( \lim_{x \to 1^+} f(x) \): - We use the definition of \( f(x) \) for \( x > 1 \): \[ f(x) = 4x^3 - 3x \] Substituting \( x = 1 \): \[ \lim_{x \to 1^+} f(x) = 4(1)^3 - 3(1) = 4 - 3 = 1 \] ### Step 3: Calculate the left-hand limit as \( x \) approaches 1 To find the left-hand limit \( \lim_{x \to 1^-} f(x) \): - We use the definition of \( f(x) \) for \( x \leq 1 \): \[ f(x) = 5x - 4 \] Substituting \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = 5(1) - 4 = 5 - 4 = 1 \] ### Step 4: Compare the left-hand and right-hand limits Now we compare the two limits: \[ \lim_{x \to 1^+} f(x) = 1 \] \[ \lim_{x \to 1^-} f(x) = 1 \] Since both the left-hand limit and the right-hand limit are equal, we can conclude that: \[ \lim_{x \to 1} f(x) = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} f(x) = 1 \] ---

To find the limit of the function \( f(x) \) as \( x \) approaches 1, we need to evaluate the left-hand limit and the right-hand limit separately. ### Step 1: Identify the function definitions The function \( f(x) \) is defined as: - \( f(x) = 5x - 4 \) for \( 0 < x \leq 1 \) - \( f(x) = 4x^3 - 3x \) for \( 1 < x < 2 \) ### Step 2: Calculate the right-hand limit as \( x \) approaches 1 ...
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Evaluate the left-hand and right-hand limits of the following function at x = 1 : f(x)={{:(5x-4",", "if "0 lt x le 1), (4x^(2)-3x",", "if "1 lt x lt 2.):} Does lim_(x to 1)f(x) exist ?

Let f(x){:{(2x+3",",xle0),(3(x+1)",",xgt0.):} Find (i) lim_(xrarr0)f(x)" "(ii)lim_(xrarr1)f(x)

Let f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):} If lim_(xrarr2)f(x) exists then find the value of a.

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let f(x)={{:((|x-3|)/((x-3))",",xne3),(0",",x=3.):} Show that lim_(xrarr3)f(x) does not exist.

Show that the function 'f' defined as follows, is continuous at x = 2, but not differentiable there at : f(x)={{:(3x-2", "0ltxle1),(2x^(2)-x", "1ltxle2),(5x-4", "xgt2):} .

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

If f(x) is defined as f(x)={{:(x,0le,xle1),(2,x,=1),(20x,x,gt1):} then show that lim_(Xrarr1) f(x)=1