Home
Class 11
MATHS
Let f(x)={{:(4x-5",",xle2),(x-a",",xgt2....

Let `f(x)={{:(4x-5",",xle2),(x-a",",xgt2.):}`
If `lim_(xrarr2)f(x)` exists then find the value of a.

Text Solution

Verified by Experts

The correct Answer is:
`a=-1`

`lim_(xto2^(-))f(x)=lim_(hto0)f(2+h)=lim_(hto0)(2+h-a)=(2-a).`
`lim_(xto2^(-))f(x)=lim_(hto0)f(2-h)=lim_(hto0){4(2-h)-5}=(8-5)=3.`
Since `lim_(xto2^(-))f(x)` exist, we must have `lim_(xto2^(+))f(x)=lim_(xto2^(-))f(x).`
`therefore2-a=3impliesa=(2-3)=-1.`
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xrarr1)f(x).

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

f(x)={(ax+2, x 1):} , If lim_(x rarr1)f(x) exist then value of a is :

Let f(x)={{:(x^(2)+1,, x 2) :} and lim_(xrarr2)f(x) exist, then the value of k is Select one: a. (1)/(2) b. 5 c. 4 d. 3

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

A function f(x) = {:{(1+x",",xle2),(5-x,","xgt2):} is

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x-3|)/((x-3))",",xne3),(0",",x=3.):} Show that lim_(xrarr3)f(x) does not exist.