Home
Class 11
MATHS
Let f(x)={:{((3x)/(|x|+2x)',xne0),(0",",...

Let `f(x)={:{((3x)/(|x|+2x)',xne0),(0",",x=0.):}`
Show that `lim_(xrarr0)f(x)` does not exist.

Text Solution

Verified by Experts

The correct Answer is:
`k=1`

`lim_(xto2)f(x)=lim_(hto0)f(0+h)=lim_(hto0)cosh=1.`
`lim_(xto0^(-))f(x)=lim_(hto0)f(0-h)=lim_(hto0)f(-h)=lim_(hto0){(-h)+k}=k.`
Since `lim_(xto0)f(x)"exists, we have"lim_(xto0^(+))f(x)=lim_(xto0^(-))f(x)"and hance"k=1.`
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Show that lim_(xrarr0)e^(-1//x) does not exist.

Show that lim_(xrarr0)1/x does not exist.

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Show that lim_(xrarr0)sin""(1)/(x) does not exist.

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x-3|)/((x-3))",",xne3),(0",",x=3.):} Show that lim_(xrarr3)f(x) does not exist.

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.