Home
Class 11
MATHS
Show that lim(xrarr0)(1)/(|x|)=oo....

Show that `lim_(xrarr0)(1)/(|x|)=oo.`

Text Solution

Verified by Experts

`Let f(x)=(1)/(|x|).` Then,
`lim_(xto0^(+))f(x)=lim_(hto0)f(0+h)=lim_(hto0)f(h)=lim_(hto0)(1)/(|h|)=lim_(hto0)1/h=oo" "[becausehgt0]`
`lim_(xto0^(-))f(x)lim_(hto0)f(0-h)=lim_(hto0)f(-h)=lim_(hto0)(1)/(|-h|)=lim_(hto0)1/h=oo.`
`thereforelim_(xto0)(1)/(|x|)=oo.`
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    RS AGGARWAL|Exercise EXERCISE 27B|72 Videos
  • HYPERBOLA

    RS AGGARWAL|Exercise EXERCISE 24|23 Videos
  • LINEAR INEQUATIONS (IN ONE VARIABLE)

    RS AGGARWAL|Exercise EXERCISE 6B|12 Videos

Similar Questions

Explore conceptually related problems

Show that lim_(xrarr0)sin""(1)/(x) does not exist.

Show that lim_(xrarr0)e^(-1//x) does not exist.

lim_(xrarr0) (sinx)/(x)= ?

Show that lim_(xrarr0)1/x does not exist.

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0)""(sin|x|)/(x)

lim_( xrarr0) (1-cosx)/(x^(2))