Home
Class 12
MATHS
Show that, underset(x to 0) lim (log(1...

Show that,
`underset(x to 0) lim (log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=

lim_(x rarr0)(log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)

Show that, underset(x to 1) lim (x^(x)-1)/(x log x)=1

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)=

lim_(x rarr0( a) -1)(log(1+x+x^(2))+log(1-x+x^(2)))/(sec x-cos x)=

Evaluate : underset( x to 0 ) lim (x) ^((1)/(log x))

underset(xrarr0)"lim"(log(1+4x))/(x) =

lim_(x rarr0)(log(1-x^(2)))/(log cos x)