Home
Class 12
MATHS
" (iv) "4 pi^(2)+8u...

" (iv) "4 pi^(2)+8u

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. (iv) 4u^(2) + 8u

Find the zeros of the polynomial f(u)=4u^(2)+8u, and verify the relationship between the zeros and its coefficients.

If u_(n) = int_(0)^(pi/2) x^(n)sinxdx , then the value of u_(10) + 90 u_(8) is : (a) 9(pi/2)^(8) (b) (pi/2)^(9) (c) 10 (pi/2)^(9) (d) 9 (pi/2)^(9)

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients:(iv) 4u^2+8u

The possible values of theta in (0, pi) such that sin (theta) + sin (4 theta) + sin (7 theta) = 0 are (1) (2 pi) / (9), (i) / (4 ), (4 pi) / (9), (pi) / (2), (3 pi) / (4), (8 pi) / (9) (2) (pi) / (4), (5 pi ) / (12), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (8 pi) / (9) (3) (2 pi) / (9 pi) ), (pi) / (4), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (35 pi) / (36) (4) (2 pi ) / (9), (pi) / (4), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (8 pi) / (9)

Prove that: cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)""(7pi)/(8) = 3/2.

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

Prove that cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + cos ^(4) ""(5pi)/(8) + cos ^(4) "" (7pi)/(8) = (3)/(2)