Home
Class 11
MATHS
int(-1)^(1)log((1+x)/(1-x))dx=...

int_(-1)^(1)log((1+x)/(1-x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(-1)^(1)log((2+x)/(2-x))dx

Show that int_(0)^(1)log((1-x)/(x))dx=0

int_(-1)^(1)log((4-x)/(4+x))dx=

int_(0)^(1)log((1-x)/(x))dx=0

The value of int_(-1)^(1) log ((x-1)/(x+1))dx is

Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

int_(-1)^(1)log[(a-x)/(a+x)]dx

int_(0)^(1)(log(1+x))/(1+x)dx

int_(0)^(1)(log(1-x))/(x)dx