Home
Class 13
MATHS
[" If "y sqrt(1-x^(2))+x sqrt(1-y^(2))=1...

[" If "y sqrt(1-x^(2))+x sqrt(1-y^(2))=1" ,then the value "],[(dy)/(dx)+(sqrt(1-y^(2)))/(sqrt(1))" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , show that (dy)/(dx)= (sqrt(1-y^(2)))/(sqrt(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , show that, (dy)/(dx)=(sqrt(1-y^(2)))/(sqrt(1-x^(2))) .

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

y sqrt(1-x^(2))+x sqrt(1-y^(2))=1,prov et h a t (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))