Home
Class 12
MATHS
IfA=[(2,0),(-3,1)] and B=[(4,-3),(-6,2)]...

If`A=[(2,0),(-3,1)] and B=[(4,-3),(-6,2)]` are such that 4A+3X=5B then x=?

A

`[(4,-5),(-6,2)]`

B

`[(4,5),(-6,-2)]`

C

`[(-4,5),(6,-2)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4A + 3X = 5B \), where \( A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix} \) and \( B = \begin{pmatrix} 4 & -3 \\ -6 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( 4A \) First, we need to multiply matrix \( A \) by 4. \[ 4A = 4 \times \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 4 \times 2 & 4 \times 0 \\ 4 \times -3 & 4 \times 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ -12 & 4 \end{pmatrix} \] **Hint:** To multiply a matrix by a scalar, multiply each element of the matrix by that scalar. ### Step 2: Calculate \( 5B \) Next, we will multiply matrix \( B \) by 5. \[ 5B = 5 \times \begin{pmatrix} 4 & -3 \\ -6 & 2 \end{pmatrix} = \begin{pmatrix} 5 \times 4 & 5 \times -3 \\ 5 \times -6 & 5 \times 2 \end{pmatrix} = \begin{pmatrix} 20 & -15 \\ -30 & 10 \end{pmatrix} \] **Hint:** Similar to the previous step, multiply each element of matrix \( B \) by 5. ### Step 3: Set up the equation for \( 3X \) Now, we can rewrite the equation \( 4A + 3X = 5B \) as: \[ 3X = 5B - 4A \] Substituting the values we calculated: \[ 3X = \begin{pmatrix} 20 & -15 \\ -30 & 10 \end{pmatrix} - \begin{pmatrix} 8 & 0 \\ -12 & 4 \end{pmatrix} \] ### Step 4: Perform the subtraction Now, we will subtract \( 4A \) from \( 5B \): \[ 3X = \begin{pmatrix} 20 - 8 & -15 - 0 \\ -30 - (-12) & 10 - 4 \end{pmatrix} = \begin{pmatrix} 12 & -15 \\ -30 + 12 & 6 \end{pmatrix} = \begin{pmatrix} 12 & -15 \\ -18 & 6 \end{pmatrix} \] **Hint:** When subtracting matrices, subtract corresponding elements. ### Step 5: Solve for \( X \) Now, we need to divide each element of \( 3X \) by 3 to find \( X \): \[ X = \frac{1}{3} \begin{pmatrix} 12 & -15 \\ -18 & 6 \end{pmatrix} = \begin{pmatrix} \frac{12}{3} & \frac{-15}{3} \\ \frac{-18}{3} & \frac{6}{3} \end{pmatrix} = \begin{pmatrix} 4 & -5 \\ -6 & 2 \end{pmatrix} \] **Hint:** To find \( X \), divide each element of \( 3X \) by 3. ### Final Answer Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 4 & -5 \\ -6 & 2 \end{pmatrix} \]

To solve the equation \( 4A + 3X = 5B \), where \( A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix} \) and \( B = \begin{pmatrix} 4 & -3 \\ -6 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( 4A \) First, we need to multiply matrix \( A \) by 4. \[ 4A = 4 \times \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 4 \times 2 & 4 \times 0 \\ 4 \times -3 & 4 \times 1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ -12 & 4 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

If 2A+3B=[(2,-1,4),(3,2,5)] and A+2B=[(5,0,3),(1,6,2)] , then B is

"If A"=[{:(,8,0),(,4,-2),(,3,6):}] and B=[{:(,2,-2),(,4,2),(,-5,1):}] then find the matrix X, such that 2A+3X=5B

Let A=[{:(" "2,3,5),(-1,0,4):}]" and "B=[{:(4,-2,3),(2," "6,-1):}]. Verify that A+B=B+A.

If A=[(2,2),(-3,1),(4,0)],B=[(6,2),(1,3),(0,4)], find the matrix C such that A+B+C is a zero

If A={:[(6,-7,1),(3,-2,1)]:}andB={:[(5,1,2),(-4,3,-5)]:} then find X such that 2A-B+X=O.

A={:[(-5,-3,4),(3,2,-4)]:}andB={:[(-4,5,-2),(3,1,5)]:} , then find X such that 3A-2B+X=0.

A={:[(1,2),(3,4),(5,6)]:},B={:[(0,1),(-1,2),(-2,1)]:} , then find matrix X such that 2A +3X=5B.

Let A=[1 2 3-5] and B=[1 0 0 2] and X be a matrix such that A=B X , then X is equal to 1/2[2 4 3-5] (b) 1/2[-2 4 3 5] (c) [2 4 3-5] (d) none of these

RS AGGARWAL-SYSTEM OF LINEAR EQUATIONS-Objective Questions
  1. If A and B are 2-rowed square matrics such that (A+B)=[(4,-3),(1,6)]...

    Text Solution

    |

  2. If [(3,-2),(5,6)]+2A=[(5,6),(-7,10)] then A=?

    Text Solution

    |

  3. IfA=[(2,0),(-3,1)] and B=[(4,-3),(-6,2)] are such that 4A+3X=5B then x...

    Text Solution

    |

  4. If (A-2B)=[(1,-2),(3,0)] and (2A-3B)=[(-2,2),(3,-3)] then B=?

    Text Solution

    |

  5. Find matrices A and B, if 2A - B = [[6, -6, 0], [-4, 2, 1]] and 2B + ...

    Text Solution

    |

  6. If 2[(3,4),(5,x)]+[(1,y),(0,1)]=[(7,0),(10,5)] then

    Text Solution

    |

  7. If [(x-y,2x-y),(2x+z,3z+w)]=[(-1,0),(5,13)]

    Text Solution

    |

  8. Solve for x and y, given that [{:(x,y),(3y,x):}][{:(1),(2):}]=[{:(3),(...

    Text Solution

    |

  9. In the matrix A=[(3-2x,x+1),(2,4)] is singular then X=?

    Text Solution

    |

  10. If A(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A(alpha))...

    Text Solution

    |

  11. if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I th...

    Text Solution

    |

  12. If A=[(1,k,3),(3,k,-2),(2,3,-4)] is singular then K=?

    Text Solution

    |

  13. If A = [(a; b); (c; d)]; find adjA

    Text Solution

    |

  14. If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}], then what is the...

    Text Solution

    |

  15. If A and B are square matrics of the same order then (A+B)(A-B)=?

    Text Solution

    |

  16. If A and B are square matrics of the same order then (A+B)^2=?

    Text Solution

    |

  17. If A and B are square matrics of the same order then (A-B)^2=?

    Text Solution

    |

  18. If A and B are symmetric matrices of the same order then (AB-BA) is al...

    Text Solution

    |

  19. Matrices A and B will be inverse of each other only if (A) A B" "="...

    Text Solution

    |

  20. If A; B are non singular square matrices of same order; then adj(AB) =...

    Text Solution

    |