Home
Class 12
MATHS
If A(alpha)=[(cosalpha,sinalpha),(-sinal...

If `A_(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A_(alpha))^2=?`

A

`[(cos^2alpha,sin^2alpha),(-sin^2alpha,cos^2alpha)]`

B

`[(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha)]`

C

`[(2cosalpha,2sinalpha),(-sinalpha,2cosalpha)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the matrix \( A_{\alpha} \) given by: \[ A_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] ### Step 1: Write down the expression for \( A_{\alpha}^2 \) We need to compute \( A_{\alpha}^2 = A_{\alpha} \cdot A_{\alpha} \). \[ A_{\alpha}^2 = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] ### Step 2: Perform matrix multiplication Using the formula for matrix multiplication, we calculate each element of the resulting matrix: 1. **First row, first column:** \[ \cos \alpha \cdot \cos \alpha + \sin \alpha \cdot (-\sin \alpha) = \cos^2 \alpha - \sin^2 \alpha \] 2. **First row, second column:** \[ \cos \alpha \cdot \sin \alpha + \sin \alpha \cdot \cos \alpha = \cos \alpha \sin \alpha + \sin \alpha \cos \alpha = 2 \sin \alpha \cos \alpha \] 3. **Second row, first column:** \[ -\sin \alpha \cdot \cos \alpha + \cos \alpha \cdot (-\sin \alpha) = -\sin \alpha \cos \alpha - \sin \alpha \cos \alpha = -2 \sin \alpha \cos \alpha \] 4. **Second row, second column:** \[ -\sin \alpha \cdot \sin \alpha + \cos \alpha \cdot \cos \alpha = -\sin^2 \alpha + \cos^2 \alpha = \cos^2 \alpha - \sin^2 \alpha \] ### Step 3: Combine the results Putting all these results together, we have: \[ A_{\alpha}^2 = \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha & 2 \sin \alpha \cos \alpha \\ -2 \sin \alpha \cos \alpha & \cos^2 \alpha - \sin^2 \alpha \end{pmatrix} \] ### Step 4: Use trigonometric identities We can simplify the matrix using the double angle formulas: - \( \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \) - \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \) Thus, we can rewrite \( A_{\alpha}^2 \) as: \[ A_{\alpha}^2 = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{pmatrix} \] ### Final Result Therefore, the final answer is: \[ A_{\alpha}^2 = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A^(2)=[{:(cos2alpha,sin2alpha),(-sin2alpha,cos2alpha) :}].

Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .

RS AGGARWAL-SYSTEM OF LINEAR EQUATIONS-Objective Questions
  1. Solve for x and y, given that [{:(x,y),(3y,x):}][{:(1),(2):}]=[{:(3),(...

    Text Solution

    |

  2. In the matrix A=[(3-2x,x+1),(2,4)] is singular then X=?

    Text Solution

    |

  3. If A(alpha)=[(cosalpha,sinalpha),(-sinalpha,cosalpha)] then (A(alpha))...

    Text Solution

    |

  4. if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I th...

    Text Solution

    |

  5. If A=[(1,k,3),(3,k,-2),(2,3,-4)] is singular then K=?

    Text Solution

    |

  6. If A = [(a; b); (c; d)]; find adjA

    Text Solution

    |

  7. If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}], then what is the...

    Text Solution

    |

  8. If A and B are square matrics of the same order then (A+B)(A-B)=?

    Text Solution

    |

  9. If A and B are square matrics of the same order then (A+B)^2=?

    Text Solution

    |

  10. If A and B are square matrics of the same order then (A-B)^2=?

    Text Solution

    |

  11. If A and B are symmetric matrices of the same order then (AB-BA) is al...

    Text Solution

    |

  12. Matrices A and B will be inverse of each other only if (A) A B" "="...

    Text Solution

    |

  13. If A; B are non singular square matrices of same order; then adj(AB) =...

    Text Solution

    |

  14. If A is a 3-rowed square matrix and |A|=4 then |adjA|=?

    Text Solution

    |

  15. If A is a 3-rowed square matrix and |A|=5 then |adjA|=?

    Text Solution

    |

  16. For any two matrices A and B , we have

    Text Solution

    |

  17. Find a matrix X such that X.[(3,2),(1,-1)]=[(4,1),(2,3)].

    Text Solution

    |

  18. If A is an invertible square matrix then |A^(-1)|=?

    Text Solution

    |

  19. If A; B are invertible matrices of the same order; then show that (AB)...

    Text Solution

    |

  20. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |