Home
Class 12
MATHS
If A is an invertible square matrix then...

If A is an invertible square matrix then `|A^(-1)|`=?

A

|A|

B

`1/(|A|)`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

`"AA"^(-1)=1rArr|"AA"^-1|=|I|=1`
`rArr |A|.|A^(-1)|=1 rArr |A^(-1)|=1/(|A|)`
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

If A is an invertible square matrix; then adjA^(T)=(adjA)^(T)

If A is an invertible square matrix,then A^(T) is also invertible and (A^(T))^(-1)=(A^(-1))^(T)

If A is a invertible matrix of order 4 then |A^(-1)|=

If A is an invertible matrix such that |A^(-1)|=2 , find the value of |A| .

If A is an invertible square matrix of order 4 , then |adjA|= .......

If A is an invertible square matrix of the order n such that |A| ne1 and |adj(adjA)|=|A|^((2n^(2)-7n+7)) then the sum of all possible values of n is

If A is an invertible symmetric matrix the A^-1 is A. a diagonal matrix B. symmetric C. skew symmetric D. none of these

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix and A^(-1)=[(3,5),(5,6)] then A=?

If A is an invertible matrix,tehn (adj.A)^(-1) is equal to adj.(A^(-1)) b.(A)/(det.A) c.A d.(det A)A

RS AGGARWAL-SYSTEM OF LINEAR EQUATIONS-Objective Questions
  1. For any two matrices A and B , we have

    Text Solution

    |

  2. Find a matrix X such that X.[(3,2),(1,-1)]=[(4,1),(2,3)].

    Text Solution

    |

  3. If A is an invertible square matrix then |A^(-1)|=?

    Text Solution

    |

  4. If A; B are invertible matrices of the same order; then show that (AB)...

    Text Solution

    |

  5. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  6. If A is square matrix such that |A| ne 0 and A^2-A+2I=O " then " A^(-1...

    Text Solution

    |

  7. If A=[(1,lambda,2),(1,2,5),(2,1,1)] is not invertible then lambda=?

    Text Solution

    |

  8. If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

    Text Solution

    |

  9. If A=[(ab,b^2),(-a^2,-ab)] then matrix A is (A) scalar (B) involuntary...

    Text Solution

    |

  10. If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix ...

    Text Solution

    |

  11. If A is singular then A(adjA)=?

    Text Solution

    |

  12. if for any 2*2 square matrix A , A(adjA)=[[8 , 0] , [0 , 8]] then writ...

    Text Solution

    |

  13. If A=[(-2,3),(1,1)] then |A^(-1)|=?

    Text Solution

    |

  14. If A=[{:(3,1),(7,5):}], find x and y such that A^(2)+xI=yA.

    Text Solution

    |

  15. If matrices A and B anticommute then

    Text Solution

    |

  16. If A=[{:(2,5,),(1,3,):}] , find adj A.

    Text Solution

    |

  17. If A=[(3,-4),(-1,2)] and B is a square matrix of order 2 such that AB=...

    Text Solution

    |

  18. If A; B are invertible matrices of the same order; then show that (AB)...

    Text Solution

    |

  19. If A=[(2,-1),(1,3)], then A^(-1)=?

    Text Solution

    |

  20. If |A|=3 and A^(-1)=[(3,-1),((-5)/3,2/3)] then adjA=?

    Text Solution

    |