Home
Class 12
MATHS
If A=[(3,4,1),(1,0,-2),(-2,-1,2)] then A...

If `A=[(3,4,1),(1,0,-2),(-2,-1,2)] then A^(-1)`=?

A

`[(2,9,-8),(-2,8,7),(-1,5,-4)]`

B

`[(2,9,-8),(2,8,7),(-1,-5,4)]`

C

`[(-2,-9,-8),(2,8,7),(-1,5,-4)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 4 & 1 \\ 1 & 0 & -2 \\ -2 & -1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 3(0 \cdot 2 - (-2) \cdot (-1)) - 4(1 \cdot 2 - (-2) \cdot (-2)) + 1(1 \cdot (-1) - 0 \cdot (-2)) \] Calculating each term: 1. \( 3(0 - 2) = 3 \cdot -2 = -6 \) 2. \( -4(2 - 4) = -4 \cdot -2 = 8 \) 3. \( 1(-1 - 0) = -1 \) Now, summing these results: \[ \text{det}(A) = -6 + 8 - 1 = 1 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a matrix is the transpose of the cofactor matrix. We will calculate the cofactors for each element of \( A \). 1. **Cofactor \( C_{11} \)**: \[ C_{11} = (-1)^{1+1} \cdot \text{det} \begin{pmatrix} 0 & -2 \\ -1 & 2 \end{pmatrix} = 1(0 \cdot 2 - (-2)(-1)) = 0 - 2 = -2 \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = (-1)^{1+2} \cdot \text{det} \begin{pmatrix} 1 & -2 \\ -2 & 2 \end{pmatrix} = -1(1 \cdot 2 - (-2)(-2)) = -1(2 - 4) = 2 \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = (-1)^{1+3} \cdot \text{det} \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix} = 1(1 \cdot -1 - 0 \cdot -2) = -1 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = (-1)^{2+1} \cdot \text{det} \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix} = -1(4 \cdot 2 - 1 \cdot -1) = -1(8 + 1) = -9 \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = (-1)^{2+2} \cdot \text{det} \begin{pmatrix} 3 & 1 \\ -2 & 2 \end{pmatrix} = 1(3 \cdot 2 - 1 \cdot -2) = 6 + 2 = 8 \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = (-1)^{2+3} \cdot \text{det} \begin{pmatrix} 3 & 4 \\ -2 & -1 \end{pmatrix} = -1(3 \cdot -1 - 4 \cdot -2) = -1(-3 + 8) = -5 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = (-1)^{3+1} \cdot \text{det} \begin{pmatrix} 4 & 1 \\ 0 & -2 \end{pmatrix} = 1(4 \cdot -2 - 1 \cdot 0) = -8 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = (-1)^{3+2} \cdot \text{det} \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} = -1(3 \cdot -2 - 1 \cdot 1) = -1(-6 - 1) = 7 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = (-1)^{3+3} \cdot \text{det} \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix} = 1(3 \cdot 0 - 4 \cdot 1) = -4 \] The cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} -2 & 2 & -1 \\ -9 & 8 & -5 \\ -8 & 7 & -4 \end{pmatrix} \] Now, taking the transpose to get the adjoint: \[ \text{adj}(A) = \begin{pmatrix} -2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = 1 \cdot \begin{pmatrix} -2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4 \end{pmatrix} \] Thus, the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} -2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 4 & 1 \\ 1 & 0 & -2 \\ -2 & -1 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Promotional Banner

Topper's Solved these Questions

  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise EXERCISE 8A (VALUE BASED QUESTIONS)|4 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos
  • THE PLANE

    RS AGGARWAL|Exercise Objective Questions|35 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If A=[(0,1,2),(1,2,3),(3,a,1)] and A^(-1)=[(1//2,-1//2,1//2),(-4,3,c),(5//2,-3//2,1//2)] , then the values of a and c are equal to

If A=[[1,2,3]], B=[(-5,4,0),(0,2,-1),(1,-3,2)] then (A) AB=[(-2),(-1),(4)] (B) AB=[-2,-1,4] (C) AB=[4,-1,2] (D) AB=[(-5,4,0),(0,4,-2),(3,-9,6)]

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.