Home
Class 11
MATHS
[" Positive Marks: "4" Negative Marks: "...

[" Positive Marks: "4" Negative Marks: "1],[" Question No "7],[" If "|z_(1)-z_(0)|=|z_(2)-z_(0)|=a" and amp "],[(z_(2)-z_(0))/(z_(0)-z_(1))=(pi)/(2)" then "z_(0)" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)-z_(0)|=|z_(2)-z_(0)|=a and amp((z_(2)-z_(0))/(z_(0)-z_(1)))=(pi)/(2), then find z_(0)

If |z_1-z_0|=|z_2-z_0|=a and amp((z_2-z_0)/(z_0-z_1))=pi/2 , then find z_0

If |z_1-z_0|=|z_2-z_0|=a and amp((z_2-z_0)/(z_0-z_1))=pi/2 , then find z_0

If |z_1-z_0|=|z_2-z_0|=a and amp((z_2-z_0)/(z_0-z_1))=pi/2 , then find z_0

|z_(1)|=|z_(2)|" and "arg z_(1)+argz_(2)=0 then

If |z_1-z_0|=z_2-z_1=pi/2 , then find z_0 .

If |z_(1)|=|z_(2)|=|z_(3)| and z_(1)+z_(2)+z_(3)=0 , then z_(1),z_(2),z_(3) are vertices of

If |(z_(1))/(z_(2))|=1 and arg(z_(1)z_(2))=0, then

If amp(z_(1)z_(2))=0and |z_(1)|=|z_(2)|=1, "then"

If |z_(1)|=|z_(2)| and argz_(1)sim argz_(2)=pi, show that z_(1)+z_(2)=0