Home
Class 11
MATHS
lim(x rarr[a])(e^({x})-{x}-1)/({x}^(2))"...

lim_(x rarr[a])(e^({x})-{x}-1)/({x}^(2))" is equal to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to

lim_(x rarr oo) (e^(x^(2)) - cos x)/(x^(2)) is equal to :

lim_(x rarr I^(-))((e^(x)-{x}-1)/({x}^(2))) equals,where {:} is

lim_(x rarr0)(e^(x)+e^(-x)+2cos x-4)/(x^(4)) is equal to

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

The value of lim_(x rarr0)(e^(x)-1-x)/(x^(2)) equals to