Home
Class 12
MATHS
Prove the following identities: (a) (l...

Prove the following identities:
(a) `(log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (viii) (log_(a)x)/(log_(ab)x) = 1+log_(a)b .

If (log_(a)x)/(log_(ab)x)=4+k+log_(a)b then k=

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

The value of (log_(a)(x))/(log_(ab)x)-log_(a)b

Prove that: log_(a)x xx log_(b)y=log_(b)x xx log_(a)y

Prove that (log_ab x)/(log_a x)=1+log_x b

The value of a(log_(b)(log_(b)x))/(log_(b)a) is