Home
Class 12
MATHS
Tangents are drawn to x^2+y^2=16 from P(...

Tangents are drawn to `x^2+y^2=16` from `P(0,h)`. These tangents meet x-axis at `A and B`.If the area of `PAB` is minimum, then value of h is: (a) `12sqrt2` (b) `8sqrt2` (c) `4sqrt2` (d) `sqrt2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangents are drawn to x^(2)+y^(2)=16 from the point P(0,h) These tangents meet the x- axis at A and B . If the area of triangle P AB is minimum , then

Tangents are drawn to x^(2)+y^(2)=16 from the point P(0,h). These tangents meet the x- axis at A and B. If the area of triangle PAB is minimum,then h=12sqrt(2) (b) h=6sqrt(2)h=8sqrt(2) (d) h=4sqrt(2)

Tangents are drawn to x^2+y^2=16 from the point P(0, h)dot These tangents meet the x- axis at Aa n dB . If the area of triangle P A B is minimum, then h=12sqrt(2) (b) h=6sqrt(2) h=8sqrt(2) (d) h=4sqrt(2)

Tangents are drawn to x^2+y^2=16 from the point P(0, h)dot These tangents meet the x-a xi s at Aa n dB . If the area of triangle P A B is minimum, then h=12sqrt(2) (b) h=6sqrt(2) h=8sqrt(2) (d) h=4sqrt(2)

Tangents are drawn to x^2+y^2=16 from the point P(0, h)dot These tangents meet the x-a xi s at Aa n dB . If the area of triangle P A B is minimum, then h=12sqrt(2) (b) h=6sqrt(2) h=8sqrt(2) (d) h=4sqrt(2)

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 , then the minimum possible value of c is (a) -sqrt(2) (b) sqrt(2) (c) 2 (d) 1

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)

The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x ,y ,z is (a) sqrt(2) (b) 2sqrt(2) (c) 4sqrt(2) (d) 8sqrt(2)