Home
Class 11
MATHS
Solve: 4^((log2logx))=logx-(logx)^2+1 (...

Solve: `4^((log_2logx))=logx-(logx)^2+1` (base is e)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 4^(log_(2)logx)=logx-(logx)^(2)+1 (base is e).

Solve 4^(log_(2)logx)=logx-(logx)^(2)+1 (base is e).

Solve 4^(log_(2)log_(x))=logx-(logx)^(2)+1 (base is e).

Solve log(x+1)=2logx

Solve 4^logx =32 -x^log4 .

int(1)/(x(logx)log(logx))dx=

∫ (1)/(x.logx.(2+logx))

intdx/(x.logx. log(logx)) =

If f(x)=log_x^(2)(logx) , then f(e)