Home
Class 12
MATHS
" (i) "|vec a|=sqrt(3),|vec b|=2" and "v...

" (i) "|vec a|=sqrt(3),|vec b|=2" and "vec a*vec b=sqrt(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

I|vec a|=sqrt(3)|vec b|=2 and vec a*vec b=sqrt(3), find the angle between vec a and vec b

If | vec a|=sqrt(3)\ | vec b|=2\ \ and vec a.vec b=sqrt(3,)\ find the angle between vec a and vec b

Find the angle between two vectors vec(a) and vec(b) such that : |vec(a)|=sqrt(3), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) .

If vec(a) and vec(b) are vectors such that |vec(a)|=sqrt(3), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) then the angle between vec(a) and vec(b) is

Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) .

If vec(a) and vec(b) are the vectors such that |vec(a)|=3sqrt(3), |vec(b)|=4 and |vec(a)+vec(b)|=sqrt(7) , then the angle between vec(a) and vec(b) is

If vec | a| = sqrt(3) , |vec(b)| = 2 and vec(a) . vec(b) = sqrt(6) , then find angle between the vectors vec(a) and vec(b)

If vec a,vec b, and vec c are such that [vec avec bvec c]=1,vec c=lambdavec a xxvec b, angle, between vec a and vec b is (2 pi)/(3),|vec a|=sqrt(2),|vec b|=sqrt(3) and |vec c|=(1)/(sqrt(3)) then the angel between vec a and vec b is (pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , , | vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angle between vec a and vec b is pi/6 b. pi/4 c. pi/3 d. pi/2