Home
Class 11
MATHS
cot^(-1){(sqrt((1+sin x))+sqrt((1-sin x)...

cot^(-1){(sqrt((1+sin x))+sqrt((1-sin x)))/(sqrt((1+sin x))-sqrt((1-sin x)))}

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

Differentiate 'tan^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))},darr backslash0

Differentiate w.r.t x : tan^-1{(sqrt (1+sin x) + sqrt (1-sin x))/(sqrt (1+sin x) - sqrt (1-sin x))}, 0 < x < pi/2

Differentiate tan^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) w.r.t.x .

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

(d)/(dx) Tan^(-1)[(sqrt(1+sinx) - sqrt(1-sin x))/(sqrt(1+sin x) + sqrt(1-sin x))]=