Home
Class 11
MATHS
" If "z=(sqrt(3))/(2)+(1)/(2)(1=sqrt(-1)...

" If "z=(sqrt(3))/(2)+(1)/(2)(1=sqrt(-1))," then "(1+y+z^(6)+iz^(4))^(9)" is equal to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to

If z _(1) = 2 sqrt2 (1 + i) and z _(2) = 1 + isqrt3, then z _(1) ^(2) z _(2) ^(3) is equal to

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

Let z_(1)=(2sqrt(3)+ i6sqrt(7))/(6sqrt(7)+ i2sqrt(3))" and "z_(2)=(sqrt(11)+ i3sqrt(13))/(3sqrt(13)- isqrt(11)) . Then |(1)/(z_1)+(1)/(z_2)| is equal to

Let z_(1)=(2sqrt(3)+i6sqrt(7))/(6sqrt(7)+i2sqrt(3))andz_(2)=(sqrt(11)+i3sqrt(13))/(3sqrt(13)-isqrt(11)) Then, |(1)/(z_(1))+(1)/(z_(2))| is equal to a)47 b)264 c) |z_(1)-z_(2)| d) |z_(1)+z_(2)|