Home
Class 11
MATHS
If |z1-z0|=|z2-z0|=a and amp((z2-z0)/(z0...

If `|z_1-z_0|=|z_2-z_0|=a` and `amp((z_2-z_0)/(z_0-z_1))=pi/2` , then find `z_0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)-z_(0)|=|z_(2)-z_(0)|=a and amp((z_(2)-z_(0))/(z_(0)-z_(1)))=(pi)/(2), then find z_(0)

If |z_1-z_0|=z_2-z_1=pi/2 , then find z_0 .

If |z_1| = |z_2| =1 and amp z_1 +amp z_2 =0 then

if |z_1| = |z_2| ne 0 and amp (z_1)/(z_2) = pi then

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

If |z_(1)|=|z_(2)|andamp(z_(1))+amp(z_(2))=0, then

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

Statement I: If |z_1+z_2|=|z_1|+|z_2|, then Im(z_1/z_2)=0 (z_1,z_2 !=0) Statement II: If |z_1+z_2|=|z_1|+|z_2| then origin, z_1, z_2 are collinear with 'z_1' and z_2 lies on the same side of the origin (z_1,z_2 !=0)