Home
Class 12
MATHS
" Show that i) "a^(2)cot A+b^(2)cot B+c^...

" Show that i) "a^(2)cot A+b^(2)cot B+c^(2)cot C=(abc)/(R)

Promotional Banner

Similar Questions

Explore conceptually related problems

r^(2) cot ""(A)/(2) cot ""(B)/(2) cot ""(C)/(2)

In any /_ABC, prove that (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(c^(a)-b^(2))cot C=0

For any triangle ABC, prove that (b^(2)c^(2))cot A+(c^(2)a^(2))cot B+(a^(2)b^(2))cot C=

In a ABC, prove that: (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(a^(2)-b^(2))cot C=0

In any Delta ABC, prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=(a+b+c)/(b+c-a)cot((A)/(2))

In any triangle ABC, prove that, (b^(2)-c^(2))cot A + (c^(2)-a^(2)) cot B + (a^(2)-b^(2)) cot C=0

r("cot"(A)/(2)"cot"(B)/(2)"cot"(C)/(2))=

show that in a triangle /_ABC:a cot A+b cot B+c cot C=2(R+r)

In Delta ABC Prove that a cot A + b cot B + c cot C = 2 ( R + r)