Home
Class 12
MATHS
sum(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2...

sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(m=1)^(oo)Tan^(-1) ((2m)/(m^(4)+m^(2)+2))=

The value of sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) is :

The value of sum_(m=1)^(oo)tan^(-1)((2m)/(m^(4)+m^(2)+2)) is

sum_(m-1)^ntan^(-1)((2m)/(m^4+m^2+2)) is equal to (a) tan^(-1)((n^2+n)/(n^2+n+2)) (b) tan^(-1)((n^2-n)/(n^2-n+2)) (c) tan^(-1)((n^2+n+2)/(n^2+n)) (d) none of these

Prove that: sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))=tan^(-1)((n^(2)+n)/(n^(2)+n+2))

The value of sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2)) is

The value of sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2)) is