Home
Class 12
MATHS
" 35."y=tan^(-1)[(sqrt(1+sin x)+sqrt(1-s...

" 35."y=tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))];quad x in((pi)/(2),pi)

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=

(cot^(-1){sqrt(1+sin x)+sqrt(1-sin x)})/(sqrt(1+sin x)-sqrt(1-sin x))

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

(d)/(dx) Tan^(-1)[(sqrt(1+sinx) - sqrt(1-sin x))/(sqrt(1+sin x) + sqrt(1-sin x))]=

If y=cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))](0

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .