Home
Class 12
MATHS
If x=log(a)(bc),y=log(b)(ca) and z=log(...

If `x=log_(a)(bc),y=log_(b)(ca)` and `z=log_(c )(ab)` show that
`x+y+z+2=xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1 + log_(a)(bc) , y=1 +log_(b)(ca) and z=1+ log_(c )(ab) prove that xy+yz+zx=xyz

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If =1+log_(a)(bc);y=1+log_(b)(ac);z=1+log_(c)(ab) then prove that xyz=xy+yz+zx

If x=log_(a)(bc),y=log_(b)(ca)" and "z=log_(c)(ab) , then which of the following is equal to 1 ?

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab) , then find 1/(x+1) + 1/(y+1) + 1/(z+1)

If x=log_(2a)a,y=log_(3a)2a and z=log_(4a)3a then prove that xyz+1=2yz

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz