Home
Class 10
MATHS
Prove : 2(sin^(6)theta+cos^(6)theta)-3(s...

Prove `: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

Prove that 2 (sin^(6)theta +cos^(6) theta ) - 3(sin^(4)theta +cos^(4) theta ) + 1 = 0

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.