Home
Class 12
MATHS
cos(xy)=x+y...

`cos(xy)=x+y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of pairs of integer (x,y) that satisfy the following two equations: {cos(xy)=x and tan(xy)=y(a)1(b)2(c)4

The number of pairs of integer (x,y) that satisfy the follownig two equations {(cos (xy)=x),(tan(xy)=y):}

If cos ( xy) = x , show that (dy)/(dx) = -((1+ y sin (xy)))/(x sin xy)

If 3sin(xy)+4cos(xy)=5, then (dy)/(dx)=(y)/(x) (b) (3sin(xy)+4cos(xy))/(3cos(xy)-4sin(xy))(c)(3cos(xy)+4sin(xy))/(4cos(xy)-3sin(xy))(d) none

If x^(3)cos(xy) + y^(3)sin(xy) + 1 = 0 "then" (dy)/(dx) equals

If cos (xy) =sin (x+y) ,then (dy)/(dx)

Find (dy)/(dx) if,sin xy+cos(x+y)=1

The solution of (x^(2)dy)/(dx)-xy=1+cos((y)/(x)) is

Find (dy)/(dx) when : xy+1=cos(xy)" when " x=(pi)/(2), y=0