Home
Class 10
MATHS
Solution to (a^2)/(x)-(b^2)/(y)=0, (a^2b...

Solution to `(a^2)/(x)-(b^2)/(y)=0, (a^2b)/(x)+(b^2a)/(y)=a+b,x ne0,y ne0` is………

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following pair of equations for x and y : (a^(2))/(x)-(b^(2))/(y)=0, (a^(2)b)/(x)+(b^(2)a)/(y)=a+b , x ne 0 , y ne 0 .

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

Solve each of the following pairs of equations by reducing them to a pair of linear equations. (2)/(x)+(3)/(y)=13 and (5)/(x)-(4)/(y)=-2 where x ne 0,y ne0 .

( 3 ) /(x) - (1 ) /( y) + 9 = 0 , (2)/(x) + ( 3)/( y) = 5 ( x ne 0 , y ne 0 )

Solve for x and y : ( 3a)/(x) - ( 2b )/(y ) + 5 = 0, (a)/(x) + ( 3b)/( y) - 2 = 0 ( x ne 0 , y ne 0 )

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

Solve for x and y. (3a)/x-(2b)/y+5=0, a/x+(3b)/y-2=0(x ne 0, y ne 0)

The non-zero solution of the equation (a-x^(2))/(bx) - (b-x)/(c) = (c-x)/(b) - (b - x^(2))/(c x) , where b ne 0, c ne 0 is

Solve (2)/(x) + (3)/(y) = 13, (5)/(x) - ( 4)/(y) = - 2 , where x ne 0 and y ne 0 .