Home
Class 12
MATHS
The range of f(x)=sin^(3)x in domain [-(...

The range of `f(x)=sin^(3)x` in domain `[-(pi)/(2),(pi)/(2)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the range of f(x)=sin^(-1) x" in "[0,2pi] other than [-pi/2,pi/2]

Let f(x)=sin^(-1)x+|sin^(-1)x|+sin^(-1)|x| The range of f(x) is (a) [0,(pi)/(2)] (b) [0,(3pi)/(2)] (c) [0,(pi)/(4)] (d) [0,pi]

The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these

Consider the real-valued function satisfying 2f(sin x)+f(cos x)=x .then the (a)domain of f(x) is R (b)domain of f(x)is[-1,1] (c)range of f(x) is [-(2 pi)/(3),(pi)/(3)]( d)range of f(x) is R

The range of f(x)=sin^(-1)(sqrt(x^(2)+x+1)) is (0,(pi)/(2))(b)(0,(pi)/(3))(c)((pi)/(3),(pi)/(2)) (d) [(pi)/(6),(pi)/(3)]

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2

bb"Statement I" The range of f(x)=sin(pi/5+x)-sin(pi/5-x)-sin((2pi)/5+x)+sin((2pi)/5-x) is [-1,1]. bb"Statement II " cos""pi/5-cos""(2pi)/5=1/2