Home
Class 12
MATHS
[" If "f(9)=9" and "f'(9)=4," then "lim(...

[" If "f(9)=9" and "f'(9)=4," then "lim_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)],[" equals : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(9)=9 and f'(9)=1 then lim_(x rarr 9) (3-sqrt(f(x)))/(3-sqrtx)

lim_(x rarr0)(sqrt(x+4)-2)/(sqrt(x+9)-3)

If f(9)=9,f'(9)=4,then(lim)_(x rarr9)(sqrt(f(x))-3)/(sqrt(x)-3)=

If f(9) =9, f^(')(9) = 4 , then lim_(x rarr 9)(sqrt(f(x))-3)/(sqrtx - 3) =

If f(9)=9 and f'(9)=4 then lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to -

lim_(x rarr9)(3-sqrt(x))/(4-sqrt(2x-2))

If f(9)=9 , f'(9)= 4 then lim _ (x rarr9) (sqrt f(x) -3)/(sqrt(x)-3) =_____.

If f be a function such that f(9) = 9 and f'(9) = 3, then : lim_(x rarr 9) (sqrt(f(x)) - 3)/(sqrt(x) - 3) is :

If f(9)=9" and f'"(9)=4 then Lt_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f (9) = 9, f '(9) = 1, then lim_(x rarr 9) (8-sqrt(f(x)))/(3-sqrtx) =