Home
Class 12
MATHS
If log x log y log z=(y-z)(z-x)(x-y), th...

If `log x log y log z=(y-z)(z-x)(x-y),` then a) `x^y*y^z*z^x=1` b) `x^2y^2z^2=1` c) `rootx(x).root (y)y.root(z)z1 =` d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in