Home
Class 12
MATHS
int(x e^(lnsinx)-cosx)dx...

`int(x e^(lnsinx)-cosx)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(x e^ln(sinx)-cosx)dx is equal to

int(e^x(1-sinx))/(1-cosx)dx

int (e^(logx)+sinx)cosx dx

Evaluate the integral: int e^x (sinx+cosx)dx

int e^x(sinx+cosx)dx=

Evaluate: int e^(2x) (2sinx+cosx)dx

Given that int e^x[f(x)+f^'(x)] dx = e^x f(x)+c . Using the given result evaluate int e^x(sinx+cosx)dx

inte^(x)(sinx+cosx)dx=?