Home
Class 12
MATHS
int[sin(101 x)*sin^(99)x]dx...

`int[sin(101 x)*sin^(99)x]dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int[sin(101x)*sin^(99)x]dx

Integration using rigonometric identities : int sin(101x)*sin^(99)x dx=...+c

If int sin(101x)*sin^(99)x*dx=(sin kx(sin x)^(k))/(k)+c then (k)/(20) is equal to k then |k| is

int(sin(101x).sin^(99)x)dx equals

int(sin(101x).sin^(99)x)dx equals

int(sin(101x).sin^(99)x)dx equals

int sin(101x)sin^(99)xdx=(sin(100x)(sin x)^(lambda))/(mu) then (lambda)/(mu)

int\ sin(101x)sin^99x dx = (sin(100x)(sin x)^lambda)/mu then lambda/mu

int_0^(2pi)sin^(100)xcos^(99)x dx

int(sin x)/(sin(a+x))dx