Home
Class 11
MATHS
Compute f'(0^(+)) if f(x)=(x(e^(1/x)-1))...

Compute `f'(0^(+))` if `f(x)=(x(e^(1/x)-1))/(e^(1/x)+1)`:

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(e^(1/x)-1)/(e^(1/x)+1) find f^(-1)(x)

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

If f(x)={(e^(x+1)-e^(x),x =1)

Discuss the continulity of f(x) = (e^(1/x) -1)/(e^(1/x) + 1) , x ne 0 and f(0) = 0 at x = 0 .

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

For the function f(x) = (e^(1/x) -1)/(e^(1//x) + 1) , x=0 , which of the following is correct .

Discuss the continuity of f ( x ) = (e^(1)/(x)-1)/(e^(1)/(x)+1), x ne 0 and f(0) = 0 at x=0