Home
Class 12
MATHS
f(x)=int2e^xcos^2x(-tan^2x+tanx+1)dx and...

`f(x)=int2e^xcos^2x(-tan^2x+tanx+1)dx` and f(x) passes through `(pi,0)` then `(f(0)+f'(0))`equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int2e^(x) cos^(2)x(-tan^(2)x+tanx+1)dx and f(x) passes through (pi, 0) then (f(0)+f^(')(0)) equals

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) If f : R-(2n +1) pi/2 to R then f (x) be a :

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) If f : R-(2n +1) pi/2 to R then f (x) be a :

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) The number of solution (s) of the equation f (x) =x ^(3) in [0, 2pi] be:

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) The number of solution (s) of the equation f (x) =x ^(3) in [0, 2pi] be:

If f(x)+int{f(x)}^(-2)dx=0 and f(1)=0 then f(x) is

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals

If f(x) = (2x+ tanx)/(x) , x!=0 , is continuous at x = 0, then f(0) equals

If the curve f(x) = int e^(x) dx passing through (0,1) then the ascending order of f(0), f(1), f(-1), f(2) is