Home
Class 12
MATHS
If y=e^(t)+cost,x=logt+sint then find dy...

If `y=e^(t)+cost,x=logt+sint` then find `dy/dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

x=sin(logt),y=log(sint) find dy/dx

If x=3cost-2cos^(3)t,y=3sint-2sin^(3)t then find dy/dx .

Find (dy)/(dx) if x=asqrt(cos2t) cost and y=asqrt(cos2t) sint then, find ((dy)/(dx)|)_(t=pi//6)

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If x=e^(t)cost and y=e^(t)sint , then what is (dx)/(dy) at t=0 equal to?

If y=cost and x=sint , then what is (dy)/(dx) equal to?

If x=e^(t)sint, y=e^(t)cost then (dy)/(dx) at t=pi is

If x = e^(t)sint, y =e^(t)cost then (d^2y)/(dx^2) at t = pi is