Home
Class 12
MATHS
यदि z= (sqrt3)/(2) + (i)/(2) (i= sqrt-1)...

यदि `z= (sqrt3)/(2) + (i)/(2) (i= sqrt-1)`, तो `(1+ iz + z^(5) + iz^(8))^(9)` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

If z=(sqrt(3)+i)/(2) then (iz)^(59) is

If z=(sqrt(3)+i)/(2) the (iz)^(59)=

if z=(sqrt(3)+i)/(2) then (iz)^(59)=

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to