Home
Class 12
MATHS
Find sum(i=1)^n sum(i=1)^n sum(k=1)^n (i...

Find `sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)`

Text Solution

Verified by Experts

The correct Answer is:
`= (n^3 ( n + 1)^3)/(8)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.1 (VERY SHORT ANSWER QUESTIONS)|44 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.1 ( SHORT ANSWER QUESTIONS)|21 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise SOLVED EXAMPLES|126 Videos
  • AREAS

    AAKASH SERIES|Exercise Exercise-3.2|21 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos

Similar Questions

Explore conceptually related problems

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n k

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n 1

Prove the following sum_(i=1)^(n) sum_(j=1)^(n) sum_(k=1)^(n) sum_(l=1)^(n) (1)=n^(4)

sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1, is equal to

The standard deviation of n observation x_1 , x_2, x_3 .....,x_n is 2. If sum_(i=1)^(n) x_(i)^(2)=100 and sum_(i=1)^(n) x_(i) = 20 show the value of n are 5 and 20

If n=10 , sum_(i=1)^(10) x_(i)=60 and sum_(i=1)^(10) x_(i)^(2)=1000 then find s.d

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i)^(2) = 20 show the values of n are 5 or 20

sum_(k=1)^(2n+1) (-1)^(k-1) k^2 =