Home
Class 12
MATHS
Prove that sum(1lt=ilt) sum(jlt=n)(i) = ...

Prove that `sum_(1lt=ilt) sum_(jlt=n)(i) = (n (n^2 - 1))/(6)`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.1 (VERY SHORT ANSWER QUESTIONS)|44 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.1 ( SHORT ANSWER QUESTIONS)|21 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise SOLVED EXAMPLES|126 Videos
  • AREAS

    AAKASH SERIES|Exercise Exercise-3.2|21 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(0lt=i)sum_(ltjlt=n) (C_i +C_j)= n.2^n

Prove the following sum_(1le i) sum_(lt j le n) (i+j)=(n(n^(2)-1))/(2)

If (1+x)^(n)=sum_(r=0)^(n)""^(n)C_(r )x^(r ) and if sum_(r=0)^(n) (1)/(""^(n)C_(r ))=lambda , then show that sum_(0 leilen) sum_(0 le j len) ((i)/(""^(n)C_(i)) +(j)/(""^(n)C_(j)))=n(n+1)lambda

Find the value of sum_(1le i,)sum_(jle n)(1) .

Use mathematical induction to prove that statement sum_(k = 1)^(n) (2 K - 1)^(2) = (n (2 n - 1) (2n + 1))/( 3) for all n in N

Prove the following sum_(i=1)^(n) sum_(j=1)^(n) sum_(k=1)^(n) sum_(l=1)^(n) (1)=n^(4)

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r = 1)^n r^3 ((C_r)/(C_(r - 1))^2) = (n (n + 1)^2 (n+2))/(12)

Prove that sum_(r = 1)^(n+1) (2^(r +1) C_(r - 1) )/(r (r + 1)) = (3^(n+2) - 2n - 5)/((n+1)(n+2))