Home
Class 12
MATHS
Prove that sum(0lt=i)sum(ltjlt=n) (Ci +C...

Prove that `sum_(0lt=i)sum_(ltjlt=n) (C_i +C_j)= n.2^n`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.1 (VERY SHORT ANSWER QUESTIONS)|44 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.1 ( SHORT ANSWER QUESTIONS)|21 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise SOLVED EXAMPLES|126 Videos
  • AREAS

    AAKASH SERIES|Exercise Exercise-3.2|21 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos

Similar Questions

Explore conceptually related problems

sum_(0ltilt)sum_(jlen)(C_(i)+C_(j))=(n)*2^(n)

Prove that sum_(1lt=ilt) sum_(jlt=n)(i) = (n (n^2 - 1))/(6)

Prove the following sum_(1le i) sum_(lt j le n) (i+j)=(n(n^(2)-1))/(2)

If (1+x)^(n)=sum_(r=0)^(n)""^(n)C_(r )x^(r ) and if sum_(r=0)^(n) (1)/(""^(n)C_(r ))=lambda , then show that sum_(0 leilen) sum_(0 le j len) ((i)/(""^(n)C_(i)) +(j)/(""^(n)C_(j)))=n(n+1)lambda

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(k=1)^(n-r ) ""^(n-k)C_(r )= ""^(n)C_( r+1) .

Find the value of sum_(1le i,)sum_(jle n)(1) .

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove the following sum_(r=0)^(n)sum_(s=0)^(n)(C_(r )*C_(s))=4^(n)

Prove that sum_(r = 1)^n r^3 ((C_r)/(C_(r - 1))^2) = (n (n + 1)^2 (n+2))/(12)