Home
Class 12
MATHS
With usual notation prove that 2^2.C...

With usual notation prove that
`2^2.C_0 + 3^2.C_1 + 4^2.C_2 + ……+ (n+2)^2. C_n = (n^2 + 9n + 16) 2^(n-2)`

Answer

Step by step text solution for With usual notation prove that 2^2.C_0 + 3^2.C_1 + 4^2.C_2 + ……+ (n+2)^2. C_n = (n^2 + 9n + 16) 2^(n-2) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.3 (VERY SHORT ANSWER QUESTIONS)|22 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.3 (LONG ANSWER QUESTIONS)|30 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.2 ( SHORT ANSWER QUESTIONS)|5 Videos
  • AREAS

    AAKASH SERIES|Exercise Exercise-3.2|21 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos

Similar Questions

Explore conceptually related problems

With usual notations prove that C_0 + 3.C_1 + 3^2.C_2 + ………..+3^n .C_n = 4^n

With usual notations prove that 2.C_0 + 7.C_1 + 12.C_2 + ……..+(5n + 2).C_n = (5n + 4).2^(n-1)

Knowledge Check

  • C_0 - 2^3 . C_1 +3^2. C_2 - …. + (-1)^n (n+1)^2 . (C_n)=

    A
    0
    B
    `2^n`
    C
    `(2^(n+1)-1)/(n+1)`
    D
    none
  • C_0-2. C_1+3 . C_2 …..+ (-1)^n (n+1). C_n=

    A
    `-1`
    B
    1
    C
    0
    D
    none
  • 2. C_2 + 6. C_3 + 12. C_4 +….. + n (n-1) . C_n=

    A
    `n. (n-1). 2^(n-2)`
    B
    `n. (n + 1) . 2^(n-2)`
    C
    `n. (n+1) . 2^(n - 5)`
    D
    `n. (n+1).2 ^(n+5)`
  • Similar Questions

    Explore conceptually related problems

    With usual notations prove that C_1+2.C_2x + 3.C_3x^2 + ……+2n.C_(2n) x^(2n - 1) = 2n (1 + x)^(2n -1)

    With usual notations prove that C_1/C_0 + 2. C_2/C_1 + 3.C_3/C_2 + ……+n.(C_n)/(C_(n-1)) = (n(n +1))/(2) Hence prove that (15C_1)/(15C_0) + 2.(15C_2)/(15C_1) + 3. (15C_3)/(15C_2) +……..+ 15. (15C_15)/(15C_14) = 120

    Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

    Prove that 3.C_0 + 6.C_1 + 12.C_2 + ………+3.2^n.C_n = 3^(n+1)

    C_0 + 2.C_1 + 4.C_2 + …….+C_n.2^n = 243 , then n =