Home
Class 12
MATHS
Prove that C0.C3 + C1.C4 + C2.C5 + …....

Prove that
`C_0.C_3 + C_1.C_4 + C_2.C_5 + …..+C_(n-3).C_n = ""^(2n)C_(n +3)`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.3 (VERY SHORT ANSWER QUESTIONS)|22 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.3 (LONG ANSWER QUESTIONS)|30 Videos
  • BINOMIAL THEOREM

    AAKASH SERIES|Exercise EXERCISE - 3.2 ( SHORT ANSWER QUESTIONS)|5 Videos
  • AREAS

    AAKASH SERIES|Exercise Exercise-3.2|21 Videos
  • CIRCLE

    AAKASH SERIES|Exercise EXERCISE -1.4|38 Videos

Similar Questions

Explore conceptually related problems

C_0C_2 + C_1C_3 +C_2C_4+……..+C_(n-2) C_n =

Prove that : For n = 0, 1, 2, 3, ………., n, prove that C_(0).C_(r)+C_(1).C_(r+1)+C_(2).C_(r+2)+….+C_(n-r).C_(n) =""^(2n)C_((n+r)) and hence deduce that C_(0).C_(1)+C_(1).C_(2)+C_(2).C_(3)+……..+C_(n-1).C_(n)=""^(2n)C_(n+1)

Prove that : For n = 0, 1, 2, 3, ………., n, prove that C_(0).C_(r)+C_(1).C_(r+1)+C_(2).C_(r+2)+….+C_(n-r).C_(n) =""^(2n)C_((n+r)) and hence deduce that Prove that : C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+….+C_(n)^(2)=""^(2n)C_(n)

C_0 C_1+C_1 C_2 + C_2 C_3+…+ C_(n-1) C_n=

If C_0, C_1, C_2 ,……..C_n are the coefficient in the expansion of (1 + x)^n then show that C_0 C_r + C_1 C_(r + 1) + C_2 C_(r + 2) + ………..+ C_(n-r).C_n = ((2n)!)/((n-r)!(n+r)!)

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

C_1 + 4.C_2 +7.C_3 +…….+(3n-2).C_n=

Prove that (C_0 + C_1) (C_1 + C_2) …..(C_(n-1) + C_n) = ((n+1)^n)/(n!) (C_1.C_2.C_3……C_n)